翻訳と辞書
Words near each other
・ Dual speed focuser
・ Dual Spires
・ Dual State Monument
・ Dual superconductor model
・ Dual Survival
・ Dual system of government
・ DUAL table
・ Dual therapy stent
・ Dual topology
・ Dual total correlation
・ Dual Transfer Mode
・ Dual trigger insurance
・ Dual unionism
・ Dual Unity
・ Dual Vee Model
Dual wavelet
・ Dual wield
・ Dual Work Exchanger Energy Recovery
・ Dual! Parallel Trouble Adventure
・ Dual-Axis Radiographic Hydrodynamic Test Facility
・ Dual-band blade antenna
・ Dual-beta
・ Dual-career commuter couples
・ Dual-clutch transmission
・ Dual-coding theory
・ Dual-control modes of ventilation
・ Dual-covenant theology
・ Dual-energy X-ray absorptiometry
・ Dual-flashlight plot
・ Dual-Ghia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dual wavelet : ウィキペディア英語版
Dual wavelet

In mathematics, a dual wavelet is the dual to a wavelet. In general, the wavelet series generated by a square integrable function will have a dual series, in the sense of the Riesz representation theorem. However, the dual series is not in general representable by a square integral function itself.
==Definition==
Given a square integrable function \psi\in L^2(\mathbb), define the series \ by
:\psi_(x) = 2^\psi(2^jx-k)
for integers j,k\in \mathbb.
Such a function is called an ''R''-function if the linear span of \ is dense in L^2(\mathbb), and if there exist positive constants ''A'', ''B'' with 0 such that
:A \Vert c_ \Vert^2_ \leq
\bigg\Vert \sum_^\infty c_\psi_\bigg\Vert^2_ \leq
B \Vert c_ \Vert^2_\,
for all bi-infinite square summable series \. Here, \Vert \cdot \Vert_ denotes the square-sum norm:
:\Vert c_ \Vert^2_ = \sum_^\infty \vert c_\vert^2
and \Vert \cdot\Vert_ denotes the usual norm on L^2(\mathbb):
:\Vert f\Vert^2_= \int_^\infty \vert f(x)\vert^2 dx
By the Riesz representation theorem, there exists a unique dual basis \psi^ such that
:\langle \psi^ \vert \psi_ \rangle = \delta_ \delta_
where \delta_ is the Kronecker delta and \langle f\vert g \rangle is the usual inner product on L^2(\mathbb). Indeed, there exists a unique series representation for a square integrable function ''f'' expressed in this basis:
:f(x) = \sum_ \langle \psi^ \vert f \rangle \psi_(x)
If there exists a function \tilde \in L^2(\mathbb) such that
:\tilde_ = \psi^
then \tilde is called the dual wavelet or the wavelet dual to ψ. In general, for some given ''R''-function ψ, the dual will not exist. In the special case of \psi = \tilde, the wavelet is said to be an orthogonal wavelet.
An example of an ''R''-function without a dual is easy to construct. Let \phi be an orthogonal wavelet. Then define \psi(x) = \phi(x) + z\phi(2x) for some complex number ''z''. It is straightforward to show that this ψ does not have a wavelet dual.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dual wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.